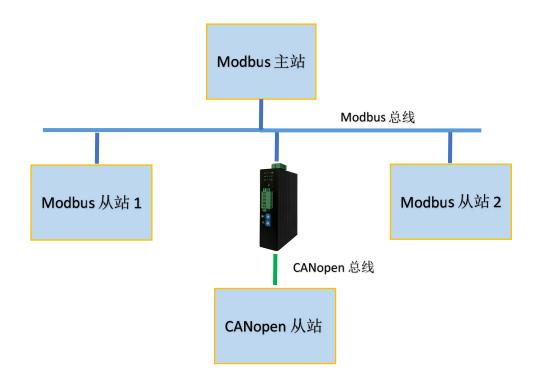
CANOPEN 转 Modbus 说明书

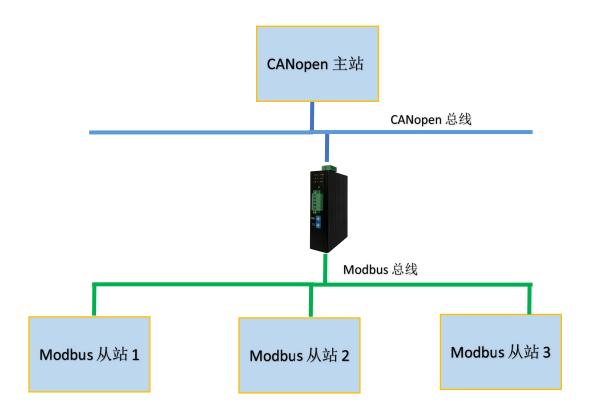
型号: SG-CN_MOD-110

天津滨海新区三格电子科技有限公司 www.tj-sange.com

目录


-,	概述	3
	1.1 功能	3
	1.2 硬件说明	4
	1.2.1 指示灯说明	4
	1.2.2 接线端子说明	5
	1.2.3 拨码开关说明	6
	1.2.4 电源	6
_,	CANopen 做主站/Modbus 做从站	7
	2.1 功能特点	7
	2.2 工作原理	7
	2.2.1 输入输出缓冲区在对象字典中的映射	8
	2.2.2 Modbus 数据在输入输出缓冲区中的存储位置	10
	2.2.3 Modbus 主站控制 CANopen 从站状态的原理	12
	2.3 软件配置	14
三、	CANopen 做从站/Modbus 做主站	17
	3.1 功能特点	17
	3.2 工作原理	17
	3.2.1 输入输出缓冲区在对象字典里的映射	18
	3.3 软件配置	23
四、	PDO 协议说明与配置	25
五、	快速 SDO 协议说明与配置	27
	5.1 SDO 通信简介	27
	5.2 终止 SDO 通信	29
附录	录: 网关配置步骤	29

一、概述


1.1 功能

本网关可通过自带的配置软件设置成两种不同的通信网关:

(1) CANopen 做主站/Modbus 做从站网关: CANopen 主站协议与 Modbus 从站协议之间的转换,可实现单个 CANopen 从站设备与 Modbus 主站之间的数据通信,典型应用拓扑如下:

(2) CANopen 做从站/Modbus 做主站网关: Modbus 主站协议与 CANopen 从站协议之间的转换,可实现多个 Modbus 从站设备与 CANopen 主站之间的数据通信,典型应用拓扑如下:

1.2 硬件说明

1.2.1 指示灯说明

指示灯如下图所示:

设备共有6个指示灯, 其功能如下图所示:

符号	定义	状态	说明
DOW	POW电源指示灯	熄灭	电源未接通
POW		常亮	电源接通
SYS	系统指示灯	熄灭	配置模式

		快闪	nodeID 设置错误
		单闪	预操作状态
		常亮	操作状态
CIT.		熄灭	CAN 总线未发送数据
СТ	CAN 发送指示灯	常亮	CAN 总线在发送数据
	CAN 接收指示灯	熄灭	CAN 总线未接收数据
CR		常亮	CAN 总线在接收数据
		熄灭	串口未发送数据
MT	串口发送指示灯	常亮	串口在发送数据
		熄灭	串口未接收数据
MR	串口接收指示灯 	常亮	串口在接收数据

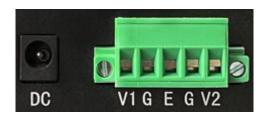
1.2.2 接线端子说明

接线端子如下图所示:

符号定义如下表所示:

符号	定义
A	RS485+
В	RS485-
Е	接屏蔽层
Н	CAN_H 信号线
L	CAN_L 信号线

1.2.3 拨码开关说明

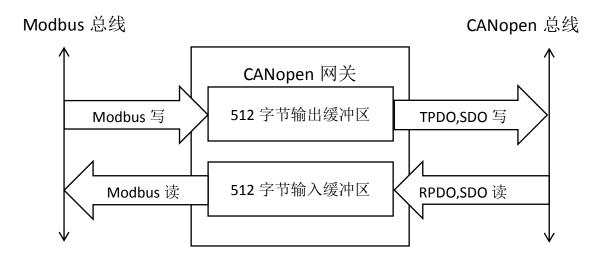

拨码开关用于设置网关 CANopen 侧的节点 ID,即 nodeID,有效范围为 $1\sim127$ ($01h\sim7Fh$),如下图所示,nodeID = 16*0+1*2=2;如果在网关运行过程中改变拨码开关的值,网关会在 3S 后自动重启,用户也可手动重启。

如果想通过配置软件给网关下载配置信息,需将 nodeID 设置为 0,此时 SYS 灯熄灭,然后可下载配置,待弹出"配置成功"的窗口时,可关闭串口,并将 nodeID 设置为想要的值即可。

如果 128<= nodeID <=255, SYS 灯会快闪,指示 nodeID 设置错误,此时需将 nodeID 设置为有效值,方可继续使用。

1.2.4 电源

符号	定义
DC	DC 插座,电压范围 9~24V
V1、V2	设备支持双电源冗余,接电源正,电压范围 9~24V
G	接电源负
Е	接大地


二、 CANopen 做主站/Modbus 做从站

2.1 功能特点

- (1) 自带网关配置软件,配置信息可通过 PC 的 USB 口下载进网关设备,设备自动保存最新配置信息,设备断电再上电后无需加载配置;
- (2) 网关在 CANopen 网络上是 CANopen 主站,在 Modbus 网络上是 Modbus 从站,可以实现单个 CANopen 从站与 Modbus 主站之间的数据通信;
- (3) CANopen 支持 CANopen DS301; 支持 NMT、Heartbeat、64 个 8 字节 TPDO 和 64 个 8 字节 RPDO、快速 Download SDO 和快速 Upload SDO 总共可配置 80 个;
 - (4) 支持 CAN 波特率: 5K~1Mbps, 默认 20K;
 - (5) Modbus 从站支持功能码: 3、4、6、16 号功能码;
 - (6) 支持串口波特率 1200~115200bps, 默认 9600;
- (7) 支持 RTU 通讯格式; 8 位数据位,无校验、奇校验、偶校验可选,默认无校验,1 停止位、2 停止位可选,默认1 停止位;
 - (8) 数据交换缓存区包括 512 字节的输入缓冲区和 512 字节的输出缓冲区:
 - (9) 内置 120 欧姆终端电阻。

2.2 工作原理

网关数据交换图如下图所示:

输入输出缓冲区地址范围均为 0~255Word。

512 字节输入缓冲区用于存放**输入寄存器**数据,输入缓冲区被映射到 CANopen 的 RPDO 中,网关可通过 RPDO 和 SDO 读命令获取 CANopen 从站发来的数据,并将数据保存在输入缓冲区中,Modbus 主站可通过 4 号功能码来读取输入缓冲区中缓存的最新数据。

512 字节输出缓冲区用于存放**保持寄存器**数据,输出缓冲区被映射到 CANopen 的 TPDO 中,当 Modbus 主站通过 6 和 16 号功能码向网关的输出缓冲 区写数据且写的数据与缓冲区原来的数据不一样时,会触发 TPDO 和 SDO 写命令,将数据发送给 Canopen 从站。Modbus 主站也可通过 3 号功能码来读取网关的输出缓冲区中的数据。

PDO 采用生产者/消费者模式来传输数据,只有请求没有应答,响应快,适合对响应速度要求高的场合。SDO 采用客户机/服务器模式进行数据传输,有请求也有应答,响应速度慢,但可靠性高。所以对可靠性要求比较高的数据可配置 SDO 命令来传输数据,否则就配置 PDO 来传输数据。

2.2.1 输入输出缓冲区在对象字典中的映射

输入输出缓冲区在对象字典里的映射如下表所示:

通信对象	默认 COB-ID	通信参数	映射参数	映射对象	输入缓冲区
TPDO1	201h	1800h	1A00h	2001h 01h-04h	(0-3) word
TPDO2	301h	1801h	1A01h	2001h 05h-08h	(4-7) word
TPDO3	401h	1802h	1A02h	2001h 09h-0Ch	(8-11) word
TPDO4	501h	1803h	1A03h	2001h 0Dh-10h	(12-15) word
TPDO5	0xC0000000	1804h	1A04h	2001h 11h-14h	(16-19) word
TPDO32	0xC0000000	181Fh	1A1Fh	2001h 7Dh-80h	(124-127) word
TPDO33	0xC0000000	1820h	1A20h	2002h 01h-04h	(128-131) word
TPDO34	0xC0000000	1821h	1A21h	2002h 7Dh-80h	(132-135) word
TPDO64	0xC0000000	183Fh	1A3Fh	2002h 7Dh-80h	(252-255) word
通信对象	默认 COB-ID	通信参数	映射参数	映射对象	输出缓冲区
RPDO1	181h	1400h	1600h	2003h 01h-04h	(0-3) word
RPDO2	281h	1401h	1601h	2003h	(4-7) word

				05h-08h		
DDDO3		4 4001	4.60.01	2003h	(8-11)	
RPDO3	381h	1402h	1602h	09h-0Ch	word	
DDD C4	4011	1 4021	1,0021	2003h	(12-15)	
RPDO4	481h	1403h	1603h	0Dh-10h	word	
DDDO	0. 0000000	1 40 41	1.00.41	2003h	(16-19)	
RPDO5	0xC0000000	1404h	1604h	11h-14h	word	
DDD 033	0xC0000000	141Fh	161Fh	2003h	(124-127)	
RPDO32				7Dh-80h	word	
DDD 044	0. 0000000	1 4201		2004h	(128-131)	
RPDO33	0xC0000000	0xC0000000 143	1420h	1420h 1620h	01h-04h	word
DDD 044	0xC0000000 142	1 4011	21h 1621h	2004h	(132-135)	
RPDO34		1421h		05h-08h	word	
DDD O C (0xC0000000 143Fh		163Fh	2004h	(252-255)	
RPDO64		143Fh		7Dh-80h	word	

2.2.2 Modbus 数据在输入输出缓冲区中的存储位置

网关工作在 CANopen/Modbus 做从站模式时,支持 3(读保持寄存器)、4 (读输入寄存器)、6(写单个寄存器)、16(写多个寄存器)号功能码,相应 的 Modbus 数据有 2 种:输入寄存器(16 位模拟量输入 AI)和保持寄存器(16 位模拟量输出 AO)。

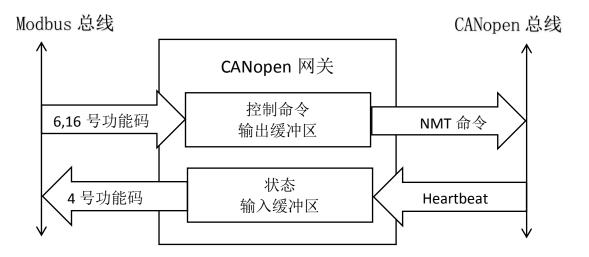
网关将 64 个 TPDO 映射到了 512 字节的输出缓冲区,每个 TPDO 可传输 8 个字节,即 4 个保持寄存器数据。

Modbus 保持寄存器数据存放在 512 字节的输出缓冲区,如下表所示:

保持寄存器地址	输出缓冲区映射地址	数据长度	索引	TPDO
0000h	0 (0000h)	16Bit	2001h 01h	TPDO1
0001h	1 (0001h)	16Bit	2001h 02h	TPDO1
0002h	2 (0002h)	16Bit	2001h 03h	TPDO1
007Fh	127 (007Fh)	16Bit	2001h 80h	TPDO32
0080h	128 (0080h)	16Bit	2002h 01h	TPDO33
0081h	129 (0081h)	16Bit	2002h 02h	TPDO33
0082h	130 (0082h)	16Bit	2002h 03h	TPDO33
00FFh	255 (00FFh)	16Bit	2002h 80h	TPDO64

网关将 64 个 RPDO 映射到了 512 字节的输入缓冲区,每个 RPDO 可传输 8 个字节,即 4 个输入寄存器数据。

Modbus 输入寄存器数据存放在 512 字节的输入缓冲区,如下表所示:


输入寄存器地址	输入缓冲区映射地址	数据长度	索引	RPDO
0000h	0 (0000h)	16Bit	2003h 01h	RPDO1
0001h	1 (0001h)	16Bit	2003h 02h	RPDO1
0002h	2 (0002h)	16Bit	2003h 03h	RPDO1
007Fh	127 (007Fh)	16Bit	2003h 80h	RPDO32
0080h	128 (0080h)	16Bit	2004h 01h	RPDO33
0081h	129 (0081h)	16Bit	2004h 02h	RPDO33
0082h	130 (0082h)	16Bit	2004h 03h	RPDO33

00FFh	255 (00FFh)	16Bit	004h 80h	RPDO64

2.2.3 Modbus 主站控制 CANopen 从站状态的原理

为了使 Modbus 主站控制和获取 CANopen 从站的状态,网关另外分配了状态输入缓冲区和控制命令输出缓冲区,且状态输入缓冲区与 512 字节的输入缓冲区是一个连续的数据存储区,控制命令输出缓冲区与 512 字节的输出缓冲区是一个连续的数据存储区,所以 2 个状态缓冲区起始地址均为 256,每个地址可以存放 2 个字节的数据。

Modbus 主站通过网关获取和设置 CANopen 从站状态的原理图如下:

如上图所示,Modbus 主站可通过 4 号功能码来读取 CANopen 从站的状态、通过 6 和 16 号功能码将控制命令写入输出缓冲区,网关收到控制命令后会通过 NMT 命令控制 CANopen 从站的状态。

CANopen 从站状态输入缓冲区的地址映射如下表所示:

状态输入缓冲区映射地址 (寄存器地址)	从站状态
256 (0100h)	节点地址为1的从站的状态
257 (0101h)	节点地址为2的从站的状态

258 (0102h)	节点地址为3的从站的状态
381 (017Dh)	节点地址为 126 的从站的状态
382 (017Eh)	节点地址为 127 的从站的状态

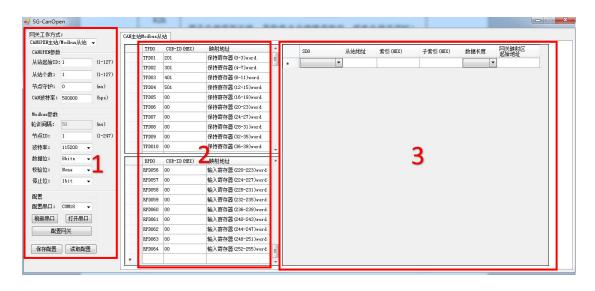
节点状态说明见下表:

节点状态值	说明
00h (Initialisation)	初始化状态
01h (Disconnected)	断开连接状态
04h (Stopped)	停止状态
05h (Operational)	操作状态
7Fh (Pre_operational)	预操作状态
0Fh (Unknown_state)	未知状态

说明: 节点状态默认为 01h (断开连接状态)。

CANopen 从站控制命令输出缓冲区的地址映射如下表所示:

Critiopen // All International Critical Control of the Control of			
控制命令输出缓冲区映射地址 (寄存器地址)	控制命令输出缓冲区		
256 (0100h)	对节点地址为1的从站的控制命令		
257 (0101h)	对节点地址为2的从站的控制命令		
258 (0102h)	对节点地址为3的从站的控制命令		
381 (017Dh)	对节点地址为 126 的从站的控制命令		
382 (017Eh)	对节点地址为 127 的从站的控制命令		


控制命令说明见下表:

控制命令	说明			
01h	启动命令(让节点进入操作状态)			
02h	停止命令(让节点进入停止状态)			
80h	让节点进入预操作状态			
81h	复位节点应用层(让节点的应用恢复初始状态)			
921	复位节点通讯(让节点的 CAN 和 CANopen 通讯重新初始化,一般			
82h	用于总线受到干扰,导致节点总线错误被动,或者总线关闭时)			

2.3 软件配置

双击配置软件图标 en.exe , 打开的窗体如下所示:

如上图所示,配置参数主要包括3部分,每一部分参数说明如下:

1、第1部分是通信参数设置区,可设置的参数及说明如下:

网关工作方式:选择 CANOPEN 主站/Modbus 从站。

①CANOPEN 参数

从站起始 ID: CANopen 从站的起始节点 ID。如果从站 ID 与网关的 ID 一样,则 SYS 灯会快闪,此时需要修改网关的 ID,并重启网关。

从站个数: CANOPEN 从站的个数。网关支持连接最多 127 个地址连续的 CANOPEN 从站。

节点守护: 0表示使用心跳模式,非零值表示使用节点守护模式,节点守护时间单位为ms,范围为100~60000ms。

CAN 波特率:有效范围是 5Kbps~1Mbps, 默认 20K。

②Modbus 参数

轮询间隔:无需配置。

节点 ID: Modbus 从站地址,默认 1。

波特率: 485 串口波特率, 1200、2400、4800、9600、14400、19200、38400、56000、57600、115200 可选, 默认 9600。

数据位: 8bits。

校验位: None、Odd、Even 可选, 默认 None。

停止位: 1、2 可选, 默认 1。

③配置

串口配置:选择可用的串口。

刷新串口: 若配置串口下拉菜单中没显示可用串口, 可单击刷新串口。

打开串口:下载配置时需打开串口,下载配置前须先将拨码开关的值设为0。

配置网关:配置完3个部分的参数后,点击配置网关,可将配置信息下载至 网关,之后会提示是否配置成功,如果配置成功,可关闭串口。

保存配置:保存配置信息。

读取配置:加载保存的配置信息。

2、第2部分是PDO对象配置区,可配置的参数及说明如下:

根据需要来配置 TPDO 和 RPDO。RPDO的 COB-ID的有效范围是 181h~1FFh、281h~2FFh、381h~3FFh、481h~4FFh; TPDO的COB-ID的有效范围是 201h~27Fh、301h~37Fh、401h~47Fh、501h~57Fh。网关TPDO的COB-ID须与CANopen从站的RPDO保持一致,网关RPDO的COB-ID须与CANopen从站的TPDO保持一致。Modbus 主站设备可通过6和16号指令将数据发送到

网关的 TPDO 对应的数据映射区中并发送给 CANopen 从站设备。Modbus 主站设备可通过 4 号指令读取网关的 RPDO 对应的数据映射区。

3、第3部分是SDO命令配置区

从站地址: CANopen 从站的节点地址,只读,自动用第 1 部分 CANOPEN 参数的从站 ID 来填充,不需手动填写。

索引、子索引: CANopen 从站的索引、子索引,均要填写十六进制数,字母要大写。

数据长度: 1、2、4字节可选,可根据 CANopen 从站指定索引、子索引的数据类型来选择。

网关映射区起始地址: 想要网关通过 SDO Upload 命令将 CANopen 从站的指定索引、子索引中的数据读到输入缓冲区中的哪个位置或想要网关通过 SDO Download 命令将输出缓冲区中哪个位置的数据写到 CANopen 从站的指定索引、子索引中,请填写十进制数。

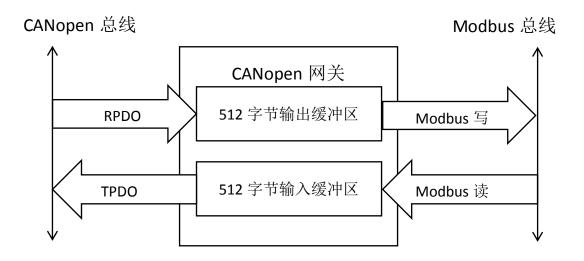
网关最多可配置 80 条 SDO 命令,包括 SDO Upload(SDO 读命令)、SDO Download(SDO 写命令),只要网关上电,就会按照 2 s 的轮询间隔来轮询 SDO 读命令,SDO 写命令则只在对应的网关映射区的数据发生变化时才会执行。如果 SDO 读写失败,网关的 SYS 灯会快闪 3 下。网关映射区起始地址可参照第 2 部分的映射地址。SDO 读命令用以将 CANopen 从站的指定索引、子索引的数据读到输入寄存器映射区的以网关映射区起始地址开始的一个或若干个地址中。SDO 写命令用以将以网关映射区起始地址开始的一个或若干个地址中的数据写到 CANopen 从站的指定索引、子索引中区。

例如: Modbus 主站想通过网关获取 CANopen 从站的第 0~第 3 个输入寄存器的值,则可以配置 RPDO1 的 COB-ID 为有效值,比如 200h,当 CANopen 从站将 4 个输入寄存器的值通过 COB-ID 为 200h 的报文发给网关时,网关会将寄存器的值保存在对应的网关映射区中(输入寄存器 0-3word),Modbus 主站可以通过 4 号功能码(读输入寄存器)读取,且 Modbus 报文中的起始地址应为 0。

例如: Modbus 主站想设置第 0 个保持寄存器的值给 CANopen 从站,且对可

靠性要求比较高,则可以配置 SDO Download(SDO 写)命令,数据长度选择 2bytes,网关映射区起始地址为 0。

说明:如果接收或发送的寄存器数据超过 4 个,则需配置不止一个 PDO 或 SDO,因为每个 PDO 最多可传送 4 个寄存器数据,而每个 SDO 只能传送 2 个 寄存器数据。


三、CANopen 做从站/Modbus 做主站

3.1 功能特点

- (1) 自带网关配置软件,配置信息可通过 PC 的 USB 口下载进网关设备,设备自动保存最新配置信息,设备断电再上电后无需加载配置;
- (2) 网关在 CANopen 网络上是 CANopen 从站,在 Modbus 网络上是 Modbus 主站,可实现 CANopen 主站与多个 Modbus 从站之间的数据通信;
- (3) CANopen 支持 CANopen DS301; 支持 Heartbeat、64 个 8 字节 TPDO 和 64 个 8 字节 RPDO、支持 SDO 对输入输出缓冲区的访问:
 - (4) 支持 CAN 波特率: 5K~1Mbps, 默认 20K;
- (5) Modbus 从站支持功能码: 1、2、3、4、5、6、15、16 号功能码, Modbus 命令最大支持 64 条:
- (6) 支持串口波特率 1200~115200bps, 默认 9600bps;
- (7) 支持 RTU 通讯格式; 8 位数据位,无校验、奇校验、偶校验可选,默认无校验,1 停止位、2 停止位可选,默认1 停止位;
- (8) 数据交换缓存区包括 512 字节的输入缓冲区和 512 字节的输出缓冲区:
- (9) 内置 120 欧姆终端电阻。

3.2 工作原理

网关数据交换图如下图所示:

512 字节输入缓冲区包括 160 字节(1280bits)的数字量输入(DI)缓冲区(用于存放**离散量输入**数据)和 352 字节的模拟量输入(AI)缓冲区(用于存放**输入寄存器**数据)。输入缓冲区被映射到 CANopen 的 TPDO中,网关可通过 Modbus 读命令获取 Modbus 从站的离散量输入和输入寄存器数据,如果数据发生变化,则触发对应的 TPDO 将数据发送给 CANopen 主站。

512 字节输出缓冲区包括 160 字节(1280bits)的数字量输出(DO)缓冲区(用于 **线圈状态**数据)和 352 字节的模拟量输出(AO)缓冲区(用于存放**保持寄存器**数据)。输出缓冲区被映射到 CANopen 的 RPDO 中,网关可通过 RPDO 接收 CANopen 主站发来的数据,保存在输出缓冲区中,网关轮询 modbus 命令时,会 把最新数据发送给 Modbus 从站。

3.2.1 输入输出缓冲区在对象字典里的映射

DI 和 DO 数据按位访问, 地址范围为 0~1279bit; AI 和 AO 按 word 访问, 地址范围为 0~175word。

DI 缓冲区在对象字典里的映射如下表所示:

通信对象	默认 COB-ID	通信参数	映射参数	映射对象	DI 缓冲区(离散量输 入/线圈状态地址)
TPDO1	181h	1800h	1A00h	6000h 01h-08h	(0-63) bit
TPDO22	0xC0000000	1815h	1A15h	6000h 09h-10h	(64-127) bit
TPDO23	0xC0000000	1816h	1A16h	6000h 11h-18h	(128-191) bit
TPDO24	0xC0000000	1817h	1A17h	6000h 19h-20h	(192-255) bit
TPDO40	0xC0000000	1827h	1A27h	6000h 99h-A0h	(1216-1279) bit

AI 缓冲区在对象字典里的映射如下表所示:

	1年以下上上海,人工的人和人的一个人们						
通信对象	默认 COB-ID	通信参数	映射参数	映射对象	AI 缓冲区(输入/ 保持寄存器地址)		
TPDO2	281h	1801h	1A01h	6401h 01h-04h	(0-3) word		
TPDO3	381h	1802h	1A02h	6401h 05h-08h	(4-7) word		
TPDO4	481h	1803h	1A03h	6401h 09h-0Ch	(8-11) word		
TPDO5	0xC0000000	1804h	1A04h	6401h 0Dh-10h	(12-15) word		
TPDO21	0xC0000000	1814h	1A14h	6401h 4Dh-50h	(76-79) word		

TPDO41	0xC0000000	1828h	1A28h	6401h 51h-54h	(80-83) word
TPDO42	0xC0000000	1829h	1A29h	6401h 55h-58h	(84-87) word
TPDO43	0xC0000000	182Ah	1A2Ah	6401h 59h-5Ch	(88-91) word
TPDO64	0xC0000000	183Fh	1A3Fh	6401h ADh-B0h	(172-175) word

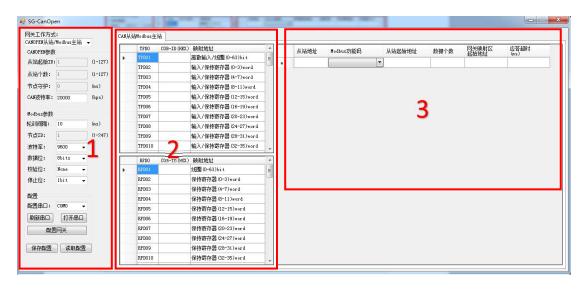
DO 缓冲区在对象字典里的映射如下表所示:

通信对象	默认COB-ID	通信参数	映射参数	映射对象	DO 缓冲区(线 圈状态地址)
RPDO1	201h	1400h	1600h	6200h 01h-08h	(0-63) bit
RPDO22	0xC0000000	1415h	1615h	6200h 09h-10h	(64-127) bit
RPDO23	0xC0000000	1416h	1616h	6200h 11h-18h	(128-191) bit
RPDO24	0xC0000000	1417h	1617h	6200h 19h-20h	(192-255) bit
RPDO40	0xC0000000	1427h	1627h	6200h 99h-A0h	(1216-1279) bit

AO 缓冲区在对象字典里的映射如下表所示:

j	通信对象	默认 COB-ID	通信参数	映射参数	映射对象	AO 缓冲区(保 持寄存器地址)
	RPDO2	301h	1401h	1601h	6411h	(0-3) word

				01h-04h	
22200	4041	4 4001	4.6001	6411h	(1-)
RPDO3	401h	1402h	1602h	05h-08h	(4-7) word
				6411h	
RPDO4	501h	1403h	1603h	09h-0Ch	(8-11) word
				6411h	
RPDO5	0xC0000000	1404h	1604h	0Dh-10h	(12-15) word
				6411h	
RPDO21	0xC0000000	1414h	1614h	4Dh-50h	(76-79) word
				6411h	
RPDO41	0xC0000000	1428h	1628h	51h-54h	(80-83) word
				6411h	
RPDO42	0xC0000000	1429h	1629h	55h-58h	(84-87) word
				6411h	
RPDO43	0xC0000000	142Ah	162Ah		(88-91) word
				59h-5Ch	
DDDOCA	0	1.425%		6411h	(172-175)
RPDO64	0xC0000000	143Fh	163Fh	ADh-B0h	word


此种模式下的网关支持快速 SDO 的访问,如下表所示:

索引	子索引	DI 缓冲区(离散量输入/线圈状态)
	01h	第0号字节(1字节,可读)
	02h	第1号字节(1字节,可读)
6000h	03h	第2号字节(1字节,可读)
	04h	第3号字节(1字节,可读)

	A0h	第 159 号字节(1 字节,可读)
走司		
索引	子索引	DO 缓冲区(线圈状态)
	01h	第0号字节(1字节,可读写)
	02h	第1号字节(1字节,可读写)
6200h	03h	第2号字节(1字节,可读写)
020011	04h	第3号字节(1字节,可读写)
	A0h	第 159 号字节(1 字节,可读写)
索引	子索引	AI 缓冲区(输入/保持寄存器)
	01h	第0号 word(2字节,可读)
	02h	第 1 号 word(2 字节,可读)
(4011	03h	第 2 号 word (2 字节, 可读)
6401h	04h	第 3 号 word (2 字节, 可读)
	B0h	第 175 号 word(2 字节,可读)
索引	子索引	AO 缓冲区(保持寄存器)
	01h	第0号 word (2字节,可读写)
	02h	第 1 号 word (2 字节,可读写)
C 41 11	03h	第 2 号 word (2 字节,可读写)
6411h	04h	第 3 号 word (2 字节,可读写)
	B0h	第 175 号 word (2 字节,可读写)

3.3 软件配置

双击配置软件图标^{SG-CanOp},打开的窗体如下所示:

如上图所示,配置参数主要包括3部分,每一部分参数说明如下:

1、第1部分是通信参数设置区,可设置的参数及说明如下:

网关工作方式:选择 CANOPEN 从站/Modbus 主站。

①CANOPEN 参数

从站起始 ID、从站个数、节点守护无需设置。

CAN 波特率:有效范围是 5Kbps~1Mbps, 默认 20K。

②Modbus 参数

轮询间隔: 网关轮询 Modbus 命令时, 发送并接收完一条命令之后到发送下 一条命令之前的时间间隔,单位是 ms,默认 50ms。

节点 ID: 当前模式下, 该选项无需设置。

波特率: 485 串口波特率, 1200、2400、4800、9600、14400、19200、38400、 56000、57600、115200 可选, 默认 9600。

数据位: 8bits。

校验位: None、Odd、Even, 默认 None。

停止位: 1、2 可选, 默认 1。

③配置

串口配置:选择可用的串口。

刷新串口: 若配置串口下拉菜单中没显示可用串口, 可单击刷新串口。

打开串口:下载配置时需打开串口。

配置网关:配置完参数后,点击配置网关,可将配置信息下载至网关,之后会提示是否配置成功。

保存配置:保存配置信息。

读取配置:加载保存的配置信息。

2、第2部分是PDO对象配置区,可配置的参数及说明如下:

根据需要来配置 TPDO 和 RPDO。 TPDO的 COB-ID的有效范围是 181h~1FFh、281h~2FFh、381h~3FFh、481h~4FFh; RPDO的 COB-ID的有效范围是 201h~27Fh、301h~37Fh、401h~47Fh、501h~57Fh。网关 TPDO的 COB-ID 须与 CANopen 主站的 RPDO保持一致,网关 RPDO的 COB-ID 须与 CANopen 主站的 TPDO保持一致,网关可通过配置 Modbus的 1~4号指令将 Modbus 从站的相应数据存放到 TPDO对应的数据映射区并发送给 CANopen 主站,网关的 RPDO对应的数据映射区里的数据可通过配置 Modbus的 5、6、15、16号指令发送给 Modbus 从站设备。

3、第3部分是 Modbus 命令配置区

从站地址: Modbus 从站的地址, 有效范围 1~247。

Modbus 功能码: 1、2、3、4、5、6、15、16 可选。

从站起始地址: Modbus 从站的寄存器、线圈、离散输入(输入状态)等的起始地址,有效范围 0~65535(协议地址),若用户使用的是 PLC 地址,须将 PLC 地址转换成协议地址再写入。PLC 地址与协议地址的对应关系举例如下:

命令	PLC 地址举例	对应的协议地址
线圈	00001~00010	00000~00009
输入状态	10001~10010	00000~00009
保持寄存器	40001~40010	00000~00009

输入寄存器	30001~30010	00000~00009

例如: 当配置的功能码为 3(读保持寄存器)的命令时,用户使用的是 PLC 地址 40001,则从站起始地址应写入 0。

数据个数: Modbus 从站寄存器、线圈、离散输入(输入状态)等的个数。

网关映射区起始地址: 想要网关通过 Modbus 读命令将 Modbus 从站的从站起始地址开始的指定数量的输入寄存器和离散输入数据读到网关输入寄存器地址和离散输入地址中的哪个地址开始的存储区或想要网关通过 Modbus 写命令将线圈地址和保持寄存器地址中哪个地址开始的指定数量的线圈状态和保持寄存器数据写到 Modbus 从站的以从站起始地址开始的存储区中。

可配置最多 64 条 Modbus 命令,网关会按照轮询间隔时间来轮询这些命令。 用户可为每条命令设置响应超时时间,超时时间应小于轮询间隔时间。网关映射 区起始地址可参照第二部分的映射地址。

例如: CANopen 主站想通过网关获取 Modbus 从站的第 0~63 个离散输入状态,则可将 TPDO1 的 COB-ID 配置成有效值,然后设置一条 Modbus 命令,从站地址为 Modbus 从站的地址,功能码选择 2,从站起始地址为 Modbus 从站的数据存放起始地址,数据个数为 64,网关映射区起始地址为 0,应答超时时间为 40ms。如果网关通过 Modbus 命令读到的输入状态与 TPDO1 对应缓冲区(离散输入 0-63bit)中的数据不一样,就会触发 TPDO1 通信,将 Modbus 从站的最新输入状态发送给 CANopen 主站。

说明:如果想读取超过64个的离散输入状态,则需配置不止一个TPDO。 离散输入状态对应的TPDO是TPDO1、TPDO22~TPDO40,共20个,每个TPDO 可传送8个字节,每个字节的每个位表示1个离散输入状态,所以每个TPDO 可传送64个离散输入状态。

四、PDO 协议说明与配置

PDO 即过程数据对象用来传输实时数据,单向传输,无需接收节点回应 CAN 报文来确认,从通讯术语上来说是属于"生产消费"模型 PDO,就像食品销售柜

台, 生产者摆出"食品",但只有有"需要"的消费者才会来买,没有指向性。 PDO 可传输 1~8 个字节。

PDO分为发送PDO(TPDO)和接收PDO(RPDO),发送和接收是以CANopen从站节点为参考,如果是主站就相反,但在使用本网关时,不管网关是主站还是从站,发送和接收均以网关为参考。

有 4 组预定义的 TPDO 和 RPDO,对应的 COB-ID (CAN-ID)如下图所示, nodeID 范围是 01h~7Fh(1~127):

PDO 对象	COB-ID (CAN-ID)	规范
TPDO1	181h~1FFh(180h+nodeID)	CIA301
RPDO1	201h~27Fh(200h+nodeID)	CIA301
TPDO2	281h~2FFh(280h+nodeID)	CIA301
RPDO2	301h~37Fh(300h+nodeID)	CIA301
TPDO3	381h~3FFh(380h+nodeID)	CIA301
RPDO3	401h~47Fh(400h+nodeID)	CIA301
TPDO4	481h~4FFh(480h+nodeID)	CIA301
RPDO4	501h~57Fh(500h+nodeID)	CIA301

PDO 通信比较灵活,广义上只要符合 PDO 范围内的所有 COB-ID(CAN-ID) 都可以做为节点自身的 TPDO 和 RPDO 使用,不受功能码和 nodeID 限制。

当网关工作在 CANopen 做主站/Modbus 做从站模式时,可将网关 TPDO 的 COB-ID 配置成所接 CANopen 从站 RPDO 的 COB-ID、将网关 RPDO 的 COB-ID 配置成所接 CANopen 从站 TPDO 的 COB-ID,这样就可以使用 PDO 进行通信了。

说明:须在上图中的 COB-ID 范围内对 PDO 进行配置,且一个 COB-ID 只能配置给一个 PDO 对象。


五、快速 SDO 协议说明与配置

5.1 SDO 通信简介

在一个 CANopen 系统中,通常 CANopen 从节点作为 SDO 服务器, CANopen 主节点作为客户端。

SDO 的通信原则非常单一:发送方(客户端)发送 COB-ID(CAN-ID)为600h+nodeID的报文,nodeID为接收方(服务器)的节点地址,数据长度为8字节;接收方(服务器)成功接收后,回应 COB-ID(CAN-ID)为580h+nodeID的报文,nodeID依然为接收方(服务器)的节点地址,数据长度为8字节。

最常用的 SDO 协议是快速 SDO,所谓快速,就是 1 个来回就搞定,读取和写入的值最多 4 个字节,命令中直接包含了要读写的索引、子索引、数据,快速SDO 协议的示意图如下所示:

通过快速 SDO,可以直接对 CANopen 节点的对象字典中的值进行读取和修改,所以在做参数配置之外,也经常作为关键性数据传输之用,保证可靠到达。

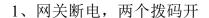
例: CANopen 主站通过 SDO 读命令读取 nodeID 为 1 的 CANopen 从站的 2000h 索引、01h 子索引中的数据,假设数据为 3 个字节的 01h。

发送 SDO 读请求: COB-ID 为 601h, 8 字节数据为 40 00 20 01 00 00 00 00 收到 SDO 读响应: COB-ID 为 581h, 8 字节数据为 47 00 20 01 01 01 01 00 例: CANopen 主站通过 SDO 写命令将 2 个字节数据 03h 写到 nodeID 为 2 的 CANopen 从站的 3000h 索引、02h 子索引中。

发送 SDO 写请求: COB-ID 为 602h, 8 字节数据为 2B 00 30 02 03 03 00 00 收到 SDO 写响应: COB-ID 为 582h, 8 字节数据为 60 00 30 02 00 00 00 00

5.2 终止 SDO 通信

SDO 客户或服务器可通过发出如下格式的报文来中止 SDO 传送:


数据 1:	数据 2-3:	数据 4:	数据 5-8:
CS 命令符	索引(3为高位)	子索引	中止码

其中 CS 命令符为 80h, 16 进制的中止码(数据 5-8) 如下表所示:

中止代码	代码功能描述	
0503 0000	触发位没有交替改变	
0504 0000	SDO 协议超时	
0601 0001	试图读只写对象	
0601 0002	试图写只读对象	
0602 0000	对象字典中对象不存在	
0607 0010	写入参数数值太大	
0609 0011	子索引不存在	
0609 0030	超出参数的值范围(写访问时)	
0800 0000	SDO 通信的一般性错误	
0800 0021	由于本地控制导致数据不能传送或保存到应用	

附录: 网关配置步骤

注意: 请先关闭用于配置网关的串口再进行下面的操作。

关都旋转到0,。

2、打开配置软件 SG-CanOpen.exe, 如果有现成的配置文件,可点击"读取

配置"按钮,选择配置文件,配置文件的后缀是.cfg,假如配置文件名是 M.cfg;如果没有现成的配置文件,可在配置软件界面根据自己的需求设置 CANopen 和 modbus 的相关参数,在配置 COB-ID 时,须填写十六进制数据,且字母需大写,比如 40A,而不是 40a。

3、给网关上电,然后按下图操作:

4、配置完成之后会弹出如下所示的提示窗口。

5、在配置软件上点击"关闭串口"的按钮,如下所示:

- 6、给网关断电,用拨码开关设置网关的 CAN-ID,且不能与所接的任一 CANopen 设备的 CAN-ID 一样。
 - 7、给网关上电。